

Exploring Soundscaping Options for the Cognitive Environments in an Openplan Office

Young Lee, PhD, LEED, WELL, FITWEL
Innovative Workplace Institute, NY
University College London, London
Elizabeth Nelson, PhD Candidate
LEARN ADAPT BUILD, Amsterdam
Joshua Jackman, PhD
-ART Health Solutions, London

Sound

INNOVATIVE WORKPLACE

The number 1 complaint in workplaces

Noisy Workplaces- challenges

- Compromised concentration
- Disturbed
- Distracted
- Psychological negativity
- Decreased performance

Concentration in a Noisy Workplace- sound solutions

- White Noise masks background noise
- · Pink Noise masks background noise with lower intensity as frequency increases
- Music good for starting work flow
- · Soundscaping nature sounds- also with imaging
- · Silence chosen for test taking or deep concentration

Research Gap- What is the solution for noisy workplaces?

- Top complaint in offices
- · Many workplaces are open plan and struggle with noise and noise variance
- · Only a few studies comparing different types of sound on cognitive tasks performance
- · Inconclusive results for best noise solution for cognitive tasks

PHYSIOLOGICAL RESPONSES : Pulse Oximeter

			Hea	rt Ra	e	Res	pirat	tory l	Rate	Pe	rfusi	on In	dex	0	₂ Sat	urati	on	Ple	th Va In	ariab dex	ility
Heart rate, respiratory rate,		ę	S1 S2	2 S3	S4	S1	S2	S3	S4	S1	S2	S3	S4	S1	S2	S3	S4	S1	S2	S3	S4
perfusion index, O2	1	P1 6	61 61	62	61	11	11	13	11	1.7	2.3	3.3	4.2	100	98	99	99	20	15	19	23
index	F	2 5	64 54	58	54	15	14	11	15	0.55	0.6	0.3 1	0.62	100	99	100	99	0.5 5	0.6		19
Stable physiological	F	P3 9	0 87	84	86	16	17	16	17	9.9	18	13	12	98	98	98	98	18	12	15	20
responses across the different sound conditions	F	94)	x 66	71	63	x	13	11	10	х	6.3	6.6	3.7	x	97	96	97		32	30	29
Acute noise exposure did	F	P5 8	6 80	83	86	17	13	13	18	14	11	5.8	1.3	97	98	99	100	24	28	26	23
not impact upon these	F	P6 7	1 63	60	65	15	16	15	16	2	1.3	4.3	5.1	100	100	99	99	19	20	19	16
responses.	F	P7 8	0 74	88	75	17	17	18	18	3.7	2	1.7	4.5	100	99	99	100	21	25	28	24
	F	8 8	1 76	77	83	16	17	18	16	3.6	6.2	2.3	6.4	98	98	99	99	28	26	23	31
		S: S	ound	conc	ition		P: P	artic	ipan	t											

PHYSIOLOGICAL RESPONSES Electrodermal Activity Sensor

- The majority of participants: the highest total number of Skin Conductance Responses (SCRs) from Spring Water Sound.
 Including Participant 15 who
- Including Participant 15 who exhibited SCRs only under the spring water condition.

		SCF	Min			SCR	Max		Total number of SCRs						
	S1	S2	S3	S4	S1	S2	S3	S4	S 1	S2	S3	S4			
P9	0.01	0.01	0.01	0.01	0.58	0.76	0.78	0.55	223.0	228.0	235.0	207.0			
P10	0.01	0.01	0.01	0.01	0.43	0.65	0.40	1.59	168.0	175.0	185.0	226.0			
P11	0.01	0.01	0.01	0.01	0.02	0.03	0.04	0.72	10.0	18.0	21.0	223.0			
P12	0.01	0.01	0.01	0.01	0.05	0.02	0.10	0.09	22.0	3.00	30.0	45.0			
P13	0.01	0.01	0.01	0.01	0.11	0.02	0.04	0.02	180.0	2.0	5.0	14.0			
P14	0.01	0.01	0.01	0.01	0.09	0.06	0.07	0.16	36.0	38.0	72.0	110.0			
P15				0.01				0.07	0	0	0	128.0			
P16	0.01	0.01	0.01	0.01	0.48	1.07	0.32	0.51	168.0	128.0	89.0	136.0			
S: S	ound c	onditio	n P	: Partic	ipant										

ANALYSIS OF AVARIANCE :Group Comparisons

Satisfaction level with no noise condition: statistically significantly higher than the rest conditions in allowing them to concentrate better

	No noise	White noise		No noise	Office noise		No noise	Spring water	
Mean	1	-0.4375		1	-0.75		1	-0.6875	
Variance	3.14286	1.0625		3.142857	1.533333		3.142857	1.295833	
Observations	15	16		15	16		15	16	
Hypothesized Mean Difference	0			0			0		
df	22			25			24		
t Stat	2.73658			3.166897			3.130839		
P(T<=t) one-tail	0.00602			0.002015			0.002269		
t Critical one-tail	1.71714			1.708141			1.710882		
P(T<=t) two-tail	0.01205*			0.004029*			0.004538*		
t Critical two-tail	2.07387			2.059539			2.063899		
* Significar	nt at the leve	el of 0.05 (p<	0.0	5)					

Satisfaction level with noise/sound allowing concentration

ANALYSIS OF AVARIANCE :Group Comparisons

Impact level of noise/sound on cognitive function tasks

Perceived impact level of no noise condition: statistically significantly higher than the rest conditions in completing cognitive performance tasks

	No noise	White noise	No noise	Office noise	No noise	Spring water
Mean	0.6	-0.5	0.6	-0.8125	0.6	-0.75
Variance	2.25714	0.66667	2.257143	0.5625	2.257143	0.866667
Observations	15	16	15	16	15	16
Hypothesized Mean Difference	0		0		0	
df	21		20		23	
t Stat	2.50946		3.278397		2.984252	
P(T<=t) one-tail	0.01018		0.001879		0.003315	
t Critical one-tail	1.72074		1.724718		1.713872	
P(T<=t) two-tail	0.02036*		0.003758*		0.006631*	
t Critical two-tail	2.07961		2.085963		2.068658	

* Significant at the level of 0.05 (p<0.05)

IMPLICATIONS

Discrepancy between the Cognitive Performance Test results and the Satisfaction/ Preference ranking:

- Psychologically preferred complete silence for such a highly focused task as a cognitive test
- A certain level of sound/ noise might actually have helped with mental alertness
- Some studies supporting the relationship between auditory stimuli and performance
- Noise annoyance threshold vs. cognitive performance task reduction threshold
- Another big question: longer-term impact of spring water sound for cognitive performance vs. stress reduction/ restoration

Consistency between the Cognitive Performance Test results, the Satisfaction/ Preference ranking, and the total number of SCRs.

- Higher SCRs: more mental effort such as higher focus, attention, and stress.
- Highest amount of SCRs, poorest overall cognitive performance test, and least preferred to hear for a full working day from Spring Water Sound.
- Outdoor soundscape vs. indoor soundscape
- Full examination of various parameters affecting indoor soundscape necessary: shape & geometry of space; acoustic properties of materials; location, distance, and direction of sound masking system; quality and acoustic variation of masking sound; job functions and tasks of the workplace; types and duration of noise from co-workers; and number of people in the space

Conclusions & Future Research Recommendations

- · Silence is preferred
- · Noise and physiology
- Patterns occurred in outcomes
- Possible difference in personas
- · Future research can extend results

THANK YOU Young Lee Elizabeth Nelson Joshua Jackman

ŨW